
 1 June 16, 2003

On-Demand Grid Application Tuning and Debugging with the NetLogger
Activation Service

Dan Gunter, Brian L. Tierney, Craig E. Tull, Vibha Virmani
Lawrence Berkeley National Laboratory

Abstract

A typical Grid computing scenarios involves many distributed hardware and software components. The more com-
ponents that are involved, the more likely one of them may fail. In order for Grid computing to succeed, there must
be a simple mechanism to determine which component failed and why. Instrumentation of all Grid applications
and middleware is an important component in the solution to this problem. However, it must be possible to control
and adapt the amount of instrumentation data produced in order to not be flooded with instrumentation data. In
this paper we describe scalable, high-performance instrumentation activation mechanism that addresses this prob-
lem.

1.0 Introduction
Grid monitoring is the measurement and publication of the state of a Grid component at a particular point in time. To

be effective, monitoring must be “end-to-end”, meaning that all components between the application endpoints must be
monitored. This includes software (e.g., applications, services, middleware, operating systems), end-host hardware (e.g.,
CPUs, disks, memory, network interface), and networks (e.g., routers, switches, or end-to-end paths).

Monitoring is required for a number of purposes, including status checking, troubleshooting, performance tuning, and
debugging. For example, assume a Grid job which normally takes 15 minutes to complete has been running for two hours
but has not yet completed. Determining what, if anything, is wrong is difficult and requires a great deal of monitoring
data. Is the job still running or did one of the software components crash? Is the network congested? Is the CPU loaded? Is
there a disk problem? Was a software library containing a bug installed somewhere? Monitoring provides the information
to help track down the current status of the job and locate any problems.

A complete end-to-end Grid monitoring system has several components, including:

Instrumentation: Instrumentation is the process of putting probes into software or hardware to measure the state of a
hardware component, such as a host, disk, network, or a software component, such as operating system, middleware, or
application. These probes are often called Sensors.

Monitoring Event Publication: Consumers of monitoring event data need to locate appropriate monitoring event
providers. Standard schemas, publication mechanisms, and access policies for monitoring event data are required.

Event Archives: Archived monitoring event data is critical for performance analysis and tuning, as well as for
accounting. Historical data can be used to establish a baseline upon which to compare current performance.

Sensor Management: As Grids environments become bigger and more complex, there are more components to monitor
and manage, and the amount of monitoring data produced by this effort can quickly become overwhelming. Some
components require constant monitoring, while others only are monitored on demand. A mechanism for activating
sensors on demand is required.

In this paper we describe a Grid activation service which is designed to address the problem of starting, stopping, and
changing the level of instrumentation data from running Grid processes. This is done in a manner that is completely
transparent to the application. The activation service is designed to work in a cluster environment, and be efficient and
scalable. The activation service also collects the instrumentation results, and forwards them to all interested consumers of
this data.

This activation service is built using components from NetLogger [15] and pyGMA. pyGMA is our implementation of
the Global Grid Forum Grid Monitoring Architecture [14]. NetLogger is used to instrument Grid applications and
services, and includes the ability to change the logging-level on the fly by periodically examining a configuration file [11].
The NetLogger binary data format provides an extremely efficient, light-weight transport mechanism for the monitoring
data. pyGMA provides an easy to use, SOAP-based framework for control messages. pyGMA also provides a standard
publish-subscribe API for Grid monitoring event publication.

1.1 Sample Application

 2 June 16, 2003

Consider the problem of developing, tuning, and running the Atlas Athena Framework [1] in a Grid Environment.
Athena is an object-oriented framework designed to provide a common infrastructure and environment for simulation,
filtering, reconstruction and analysis applications in high-energy physics experiments. The first step is to insert
instrumentation code to ensure the program is operating as expected. This can be done using an instrumentation package
such as NetLogger, and instrumentation code should be added to generate timestamped monitoring events before and after
CPU intensive tasks, and before and after all disk and network I/O, as is explained in [11].

Once the application is debugged and tested, it is ready for production use. Other monitoring services now become
important. The level of instrumentation required for the debugging scenario above can easily generate thousands of
monitoring events per second. Clearly one does not need or want this level of monitoring activated all the time, so some
type of monitoring activation service is needed so that a user can turn instrumentation on and off in a running service.

Next, it is useful to establish a
performance baseline for this service, and
store this information in the monitoring
event archive. System information such as
processor type and speed, OS version, CPU
load, disk load, and network load data
should be collected during the baseline test
runs. The monitoring event publication
service is needed to locate the sensors and
initiate a subscription for the resulting
monitoring data. Several tests are then run,
sending complete application
instrumentation (for clients, servers, and
middleware), host, and network monitoring
data to the archive. A more detailed
example is given in [10].

The components required for this
scenario are shown in Figure 1. Athena jobs are running on nodes of one or more compute clusters. The user contacts a
monitoring data registry to locate the activation service that is managing the instrumentation level and producing
monitoring data for these Athena jobs. The user requests of the activation service that the instrumentation level be
increased from the default level (e.g., just error conditions) to a higher level (e.g., full performance trace). The user then
subscribes for the instrumentation data, telling the activation service to send the data both to the monitoring archive and
back to the user. The activation service collects the data from each of the cluster nodes, and forwards it to both the user
and to the monitoring archive.

More details on each of these components are in Section 5.0, below.

2.0 Related Work
There are many monitoring systems out there, such as the Condor project’s Hawkeye [9], which have publish/subscribe

interfaces and some sort of filtering capabilities. Like Hawkeye, these systems are not concerned with application
instrumentation and its low thresholds for intrusiveness and lack of direct control mechanisms. Conversely, kernel
instrumentation packages such as MAGNet [6] are extremely efficient, but often assume the data can be stored in memory
until program exit, and also may require kernel modifications. There are also automatic and semi-automatic
application-level instrumentation systems such as Paradyn [12], which are efficient but have simple models for delivering
the results and often are specialized for a particular programming model (e.g., parallel programming codes). Although all
these systems share some goals with the Activation Service, none have the particular focus on efficient, general-purpose
application instrumentation in a wide-area distributed setting.

The Open Grid Services Architecture (OGSA) [7] incorporates at a fundamental level much of the functionality
required to implement a Grid monitoring service. Any OGSA Grid service can have associated with it arbitrary service
data elements (SDEs): named and typed data objects that can be both queried and subscribed to by other parties. The Open
Grid Services Infrastructure (OGSI) [17] specification provides specific behaviors for the notification interface outlined in
the OGSA.

2.1 Grid Monitoring Architecture

Activation Service

Figure 1: Sample Use of Activation Service

���������
���������
���������

���������
���������
���������

���������
���������

���������
���������

Compute
Clusters

activate
and subscribe

User

activate activatemonitoring
data

monitoring data

Archive

��������
�������� activated Athena

job on node

search

Registry
���������
���������
�����������������

��������

 3 June 16, 2003

In 1999 a working group was formed within the Global Grid Forum with the goal of defining a scalable architecture for
Grid monitoring. This group has produced both a set of requirements for Grid monitoring, and a high-level specification
for a Grid Monitoring Architecture (GMA).

In GMA, the basic unit of monitoring data is called an event. An event is a named, timestamped, structure that may
contain one or more items of data. This data may relate to one or more resources such as memory or network usage, or be
application-specific data like the amount of time it took to multiply two matrices. The component that makes the event
data available is called a producer, and a component that requests or accepts event data is called a consumer. A directory
service is used to publish what event data is available and which producer to contact to request it. These components are
shown in Figure 3.

GMA supports both a subscription model and a request/response model. In the former case, event data is streamed over
a persistent “channel” that is established with an initial request. In the latter case, one item of event data is returned per
request. The unique feature of GMA is that performance monitoring data travels directly from the producers of the data to
the consumers of the data.

A producer and consumer can be combined to make what is called a producer/consumer pipe. This can be used, for
example, to filter or aggregate data. For example, a consumer might collect event data from several producers, and then
use that data to generate a new derived event data type, which is then made available to other consumers. More elaborate
filtering, forwarding, and caching behaviors could be implemented by connecting multiple consumer/producer pipes.

A number of groups have are now developing monitoring services based on the GMA architecture, such as R-GMA [3]
(Relational GMA, so-called because it uses a relational model for all data, organizes data about Grid entities in tables),
REMOS [4], and TOPOMON [2].

The OGSA notification service is very similar to GMA. The OGSA interface specifies a notification source and sink,
which are very similar to a producer and consumer in the GMA. However the current OGSI specification does not provide
an unsubscribe operation, or specify a subscription language, and the notification sink requires that all messages be XML.
Exposing the Activation Producer as an OGSI notification source would, therefore, consist of uniquely naming the
Activation Service’s subscription language, adding an unsubscribe operation, and using the existing “locator” element
(contained in a subscription) to indicate the NetLogger endpoint. Further integration with NetLogger as a recognized
transport protocol for the events will require more support from the OGSI specification.

3.0 NetLogger
At Lawrence Berkeley National Lab we have developed the NetLogger Toolkit [16], which is designed to monitor,

under actual operating conditions, the behavior of all the elements of the application-to-application communication path
in order to determine exactly where time is spent within a complex system. Using NetLogger, distributed application
components are modified to produce timestamped logs of “interesting” events at all the critical points of the distributed
system. Events from each component are correlated, which allows one to characterize the performance of all aspects of
the system and network in detail.

The NetLogger library is very efficient, and also easy to use. Using the binary format, NetLogger can serialize on the
order of half a million events per second [7]. In order to instrument an application to produce event logs, the application
developer inserts calls to the NetLogger API at all the critical points in the code, then links the application with the
NetLogger library. This facility is currently available in several languages: Java, C, C++, Python, and Perl. The API has
been kept as simple as possible, while still providing automatic timestamping of events and logging to either memory, a
local file, syslog, a remote host. Sample Python NetLogger API usage is shown in Figur e1. As is shown in this example,
“interesting” events in the code (such as I/O or processing) are typically wrapped with NetLogger write() calls that
generate user-defined start and end instrumentation events

 log = netlogger.open(“x-netlog://loghost.lbl.gov”,”w”)

 done = 0

 while not done:

 log.write(0,"EVENT_START","TEST.SIZE=%d",size)

 # perform the task to be monitored

 done = do_something(data,size)

 log.write(0,"EVENT_END")

Figure 1: Sample NetLogger Usage

 4 June 16, 2003

(if space permits, add this, as it makes the filtering section easier to understand)

The NetLogger ASCII format consists of a whitespace-separated list of “field=value” pairs. Required fields are
DATE, HOST, PROG, NL.EVENT and LVL; these can be followed by any number of user-defined fields. The field
NL.EVNT contains a unique identifier for the event being logged. Here is a sample NetLogger event:

DATE=20000330112320.957943 HOST=dpss1.lbl.gov PROG=testProg
LVL=Usage NL.EVNT=WriteData SEND.SZ=49332

This says that the program testprog on host dpss1.lbl.gov performed a WriteData event with a send size of 49,322 on
March 30, 2000 at 11:23 (and some seconds) in the morning.

The NetLogger binary format is much faster, but harder for third-party tools to use. NetLogger includes tools for
converting between the ASCII and binary formats.

3.1 Grid Event Transport
 Typically, instrumentation systems only address the problem of extracting the data and writing it to memory or local

disk. In a Grid environment, it is just as important to have a robust, efficient means for transporting the instrumentation
data beyond that “first hop”, to one or more consumers, each of whom may be interested in a different subset of the same
instrumentation data. A transport to accomplish this needs to overcome several challenges. Opening connections across
the WAN is expensive, so the transport should be able to stream an arbitrary amount of data across a network connection.
Temporary network failures in the Grid are the rule, not the exception, so the transport must be reliable in the face of, e.g.,
broken TCP connections. Because pauses to write out instrumentation are rarely tolerable to the application, data should
be buffered before every potential bottleneck (e.g., before any WAN hop).

Finally, delivering a different subset of the data to different consumers requires applying filters on the data at
intermediate nodes. To make this feasible on a Grid scale, we believe that the encoding rules and underlying data model
should be part of the transport. The encoding offered should be efficient: the component being monitored cannot be
perturbed, and intermediaries should be able to apply filters or analyze the data at close to generated rates. In order to help
make the encoding efficient, and also to simplify the task of creating and processing the data, the data model should be
minimal (i.e., not relational or XML-Infoset).

NetLogger has been designed to answer these requirements of a Grid transport. It has the following features:

• Efficient streaming. NetLogger improves streaming efficiency by buffering all writes for up to 64K or 1 second.

• Reliability. The write API allows the user to specify a “backup” file. If a TCP connection fails, the log data is saved
to the backup and, optionally, automatically sent over once that connection comes back up again.

• Buffering. The Activation Service directs all logging to local disk, and then reads from these disk buffers in order
to forward the data to consumers.

• Efficient encoding. NetLogger has an efficient binary, and very readable ASCII, format. The NetLogger API’s can
transparently handle both.

• Minimal data model. Each logged item, or “event”, is a timestamped set of typed name/value pairs.

In the heterogeneous environment of the Grid, sources and sinks of information may have to dynamically choose an
acceptable transport for their required information. To allow NetLogger to participate as one possible transport, we have
written a WSDL description of NetLogger.

4.0 pyGMA
The pyGMA [13], for “Python GMA”, is our implementation of the Grid Monitoring Architecture (GMA) Producer,

Consumer, and Registry. It implements Web-Services SOAP interfaces in Python, a high-level object-oriented language. It
uses SOAP to aid with serialization and deserialization of messages. Using the pyGMA, only a small amount of Python
code would be needed to subscribe to a Producer (e.g., the Activation Producer) for events, directing the results to be
transported using NetLogger or query a Producer for one or more events (returned directly in XML).

5.0 Activation Service components
The Activation Service has three main components: the Activation Node, the Activation Producer, the Activation

Manager. When multiple activation services are deployed, a fourth component, the Registry, is also needed. These
components are deployed as shown in Figure 2, with one activation node per host, one activation producer and manager
per logical host group (e.g., a cluster), and only one (distributed) registry per “Grid”.

 5 June 16, 2003

5.1 Activation Node
The Activation Node is responsible for getting

the desired logging level from the Activation
Manager and communicating this level to the
appropriate NetLogger-instrumented programs. It is
also responsible for forwarding the instrumentation
and monitoring data from these programs to the
Activation Producer.

Applications that wish to be activated must use
the NetLogger trigger API, which causes NetLogger
to automatically periodically check a “trigger” file
for updates to the logging level or destination. In
addition, the trigger API will create a small file
describing the NetLoggerized application; the Activation Node scans for these files in order to figure out which
applications are running on a host. To get the user-specified logging level, the Activation Node polls the Activation
Manager using the pyGMA “query” operation, matches the results with the list of known NetLogger-instrumented
programs running on this host, and modifies the NetLogger “trigger” file accordingly. Although it would be possible for
the Activation Node to tell applications to log directly to the Activation Producer, this may cause delays if the Activation
Producer becomes overloaded. Therefore, the Activation Node always “triggers” logging to a temporary file on local disk,
and forwards the monitoring data asynchronously to the Activation Producer.

5.2 Activation Producer
The Activation Producer receives pyGMA

subscriptions from consumers. As mentioned above,
it also receives NetLogger instrumentation data
from the Activation Node. The main task of the
Activation Producer, then, is to match incoming
instrumentation data with the subscriptions. In order
to do this efficiently, the monitoring data is
multiplexed, demultiplexed, and filtered by a
NetLogger “pipe”, part of the standard NetLogger
library. In addition to using the efficient NetLogger
encoding, by performing these functions inside the
NetLogger library we also minimize copying of the
monitoring data. Subscriptions are transformed into
NetLogger “filters”, which are added to the pipe, as
illustrated in Figure 3.

Rather than try to build or borrow an expressive but complex filter language such as [ref], we devised a simple method
that would handle the most common use cases. NetLogger filters operate on one item of monitoring data at a time, testing
to see if that item matches any single expression. An expression is a list of (name, operator, value) tuples. For example, a
query that matches all “Start” or “End” monitoring events for program “Athena” at a logging level less than or equal to
two would be:

NL.EVNT=”Start” and PROG=”Athena” and LVL <= 2
or

NL.EVNT=”End” and PROG=”Athena” and LVL <= 2

This matches the NetLogger event:

DATE=20030529235002.185098 NL.EVNT=Start HOST=127.0.0.1 PROG=Athena LVL=1

but does not match either of the NetLogger events:
DATE=20030529235005.211075 NL.EVNT=Middle HOST=127.0.0.1 PROG=Athena LVL=1
DATE=20030529235007.518600 NL.EVNT=End HOST=127.0.0.1 PROG=Athena LVL=3

Figure 2: Activation Service Deployment

Registry

A ct iv a t io n N o d e

ap p l ica t io n

L o g ica l H os t G ro u p
(e .g ., c lu ste r)

H o st

A ctivatio n
P rod u ce r

Ac t iva tion
M a n ag er

clusters to rage

instrument

cluster

meta-scheduler

storage

instrument

���
�
�
�
�
�
�
�
�
�
�
�
���

��
��
��
��
��
��
��
��
��
��
��
��
��

“The G rid ”

Figure 3: NetLogger in the Activation Producer

Input Monitoring
Data Streams

Activation Producer

Outputs
to Consumers

���������������������
���������������������
��
�������������������
�������������������

Multiplex /
Demultiplex

filter B

Input Subscriptions
A B

filter A

NetLogger

Input Monitoring
Data Streams

Activation Producer

Outputs
to Consumers

���������������������
���������������������
��
�������������������
�������������������

Multiplex /
Demultiplex

filter B

Input Subscriptions
A B

filter A

NetLogger

 6 June 16, 2003

Due to the simplicity of the filter language, the implementation is straightforward and efficient. This is important
because, as described in Section 5.2, filtering is used extensively by the Activation Producer. Performance results for the
NetLogger filtering API are shown in Section 7.2.

5.3 Activation Manager
The Activation Manager keeps track of the logging level for a given NetLogger-instrumented application. If the

application is logging at level 3, then only log messages of level 0 through 3 will be produced; a logging level of -1 means
“off”. NetLogger instrumentation associates a log level with each piece of monitoring data, so an attempt to write
monitoring data whose level is above the current logging level results in a no-op. This means that reducing the logging
level is an easy and efficient way to reduce the overhead of instrumentation.

The Activation Manager is polled periodically (e.g., every 5 seconds) by each Activation Node for its current list of
“activations”. One issue with this design is that with a large number of hosts (e.g., 500) and a small poll interval (e.g., 5
seconds), the request parsing can cause a high load on the Activation Manager host. This potential load is one reason that
the architecture separates the Activation Manager from the Activation Producer.

5.4 Registry
Consumers who want to subscribe for monitoring data can search the Registry for the appropriate instance of the

Activation Service.A typical search would be “find me the Activation Service associated with MyApplication on Cluster
A or Cluster B”. The Registry will return one or more Activation Service endpoints, and then the user can proceed to
subscribe for the data, activate the logging, or both. The Registry could also be used to locate other GMA Producers with
the same or related monitoring data, such as a monitoring data archive.

Because there is nothing about the Registry that is specific to the Activation Service, we have not yet attempted an
implementation. Existing projects, such as the MDS and R-GMA Registry, should serve admirably. It should be noted that
we also have not needed a Registry up to this point, as all experiments have been run on a known cluster with a known
associated Activation Service.

6.0 Athena Framework Overview

The Athena [1] object-oriented framework is designed to provide a common infrastructure and environment for
simulation, filtering, reconstruction and analysis applications for the current generation of high energy physics
experiments. These experiments are expected to run for many years and therefore changes in software requirements and in

Figure 4: Visualization of NetLogger Athena Instrumentation

 7 June 16, 2003

the technologies used to build software have to be taken into account by developing flexible and adaptable software that
can withstand these changes and which can be easily maintained over the long timescales involved.

Athena integration with Grid middleware includes NetLogger instrumentation at the entry point, and some within, each
algorithm. A graph of the instrumentation results gathered from an Athena run is shown in Figure 4. Time is on the X axis,
and on the Y axis are CPU load measurements, then points representing the entry points for the Athena, in the order they
are applied. Each connected line corresponds to one processing loop. Note that the CPU load can be easily visually
correlated with instrumentation results.

7.0 Results
In this section, we present results from using the Activation Service with an instrumented Athena Framework running

on multiple nodes on a cluster. We focus on how the system scales as we increase the number of scheduled application
instances (i.e.: number of cluster nodes used) and the number of “consumers” subscribing to the instrumentation data.
Both simple and relatively complex subscriptions are employed, and a detailed (40 events/sec) logging level is activated.
The next section describes the experimental setup, and subsequent sections present the results.

7.1 Experimental Setup
The experimental setup is shown in Figure 5. We ran Athena jobs on a queue in the NERSC “PDSF” cluster

(http://pdsf.nersc.gov) in Oakland, CA, which has over 200 compute nodes available at any given time. The NetLogger
instrumentation was sent to an Activation Producer, labeled hostB, at LBNL (about 15 km away), and the activation level
was set and queried at an Activation Manager, labeled hostA, on the same subnet. Subscriptions (generated on a laptop)
told the Activation Producer to send monitoring data to two remote hosts, one at Oak Ridge National Laboratory and one
at the University of Pittsburgh Supercomputing Center. Five streams of monitoring data were sent to each consumer host.
All hosts were 400 MHz or higher Pentium systems running Linux; for more details see Appendix A.

In order to assess the performance of the entire system, various components were instrumented with NetLogger, and
these logs were sent to yet another host on the LBNL subnet.

During each test, we measured the CPU load on
the cluster nodes and on the Activation Producer and
Activation Manager, and also the latency for each
event between the time it was generated and the time
it arrived at a Consumer.

7.2 Filter Performance
To better understand the performance

characteristics of the Activation Service as a whole,
we also tested the NetLogger “filter API” in
isolation. Good performance here is crucial, as the
filtering event rate provides an upper bound on the
throughput of the Activation Producer. There are
two independent variables which affect the event
rate: filter complexity, and the proportion of events
which ‘pass’ the filter. The more complex the filter,
the longer it takes to evaluate each event. The more
events which ‘pass’ the filter, the longer NetLogger
spends performing I/O.

To evaluate the trade-off, we ran tests where the
filter complexity varied from 0 to 40 comparisons in
steps of 4, and the proportion of events that ‘passed’
varied from 0% to 100% in steps of 10%. The events
used were similar to those in the Athena
instrumentation. Results were logged from a host with the same configuration as hostB.lbl.gov, to the remote consumer in
Pittsburgh (host.psc.edu).

PDSF cluster

laptop w/DSL

Activate

logging

level

Subscribe

Activate

nodes
Monitoring

data
3 ms

RTT

~70 ms

RTT

1, 10, or 50 nodes

running

instrumented

Athena jobs

hostC.lbl.gov

Consumer

host.psc.edu

Consumer

Activation

Producer
hostB.lbl.gov

Activation

Manager

hostA.lbl.gov

Figure 5: Experimental Setup

 8 June 16, 2003

Measuring the throughput versus the two independent variables produced the co-plot shown in Figure 6. For each
scatter plot, events per second are on the Y axis, and the filter complexity is on the X axis. From left to right and bottom to
top, increasing percentages of events “passed” the filter, i.e. were written to the destination.

Clearly, the filter complexity is the main effect
on performance. Between the simplest and
most complex filters, there is roughly a factor
of five slow-down, whereas the 100% pass
filter is only about five to ten percent slower
than the 0% pass filter.

However, even at reasonably high complexity,
the filter performance is good. For example,
when the filter has 20 expressions (complexity
5), on average it can write roughly 50,000
events per second. This is still faster than the
raw speed of many less efficient logging
libraries, such as log4j [8]. It should be noted
that because the host used was relatively slow
(400MHz) and filtering is CPU-intensive,
most current hardware would have even better
performance.

7.3 Scalability
The primary scalability question that we
wished to address is: how many consumers
and producers (instrumented jobs) can be

handled by a single Activation Producer and Activation Manager? Secondarily, how does the complexity of the
subscription affect these quantities? We measured the scalability of the system by comparing the average time for an event
to travel from the instrumented job to the consumer as the number of producers, consumers, and event rate increased.

In our tests, we “pre-subscribed” to the
Activation Producer with either a simple
(4-comparison) or complex
(20-comparison) filter expression, for
each of 10 consumers. Then we submitted
roughly 5-minute jobs on PDSF. We
measured the event latencies for each
event. The median values are graphed in
Figure 7.

Before analyzing these results, some fixed
sources of latency (particular to this
implementation) should be mentioned.
First, the forwarding of events from each
instrumented job occurs in short bursts
separated by 5 seconds. Second, each
NetLogger Consumer and Producer uses
buffers with a a 1-second time-out to
increase streaming efficiency. So, because
each event is written, forwarded, read,

written, and read again (see Figure 5) -- the average fixed latency overhead is seconds.

From 1 to 20 producers, the median event latency varied between 4.7 and 6.2 seconds. Neither consumer location or
filter location seem to affect the values. Therefore, it seems that these latencies are random variation just above the fixed
latency discussed above. This means that a single Activation Producer scaled to 20 producers at 40 events per second with
a complex filter to 10 consumers, i.e. an aggregate output rate of 8,000 events per second.

From 50 and 100 producers, we see linear increases in latency for both complex and simple filtering. As expected, the
complex filter is slower than the simple filter. Again, consumer location does not affect latency.

Figure 6: Filter Performance results

0% pass 10% pass 20% pass 30% pass

40% pass 50% pass 60% pass 70% pass

80% pass 90% pass 100% pass

Median Latency by Filter Type

Number of Producers

La
te

nc
y

(s
ec

)

0

50

100

150

200

0 20 40 60 80 100

complex simple

0 20 40 60 80 100

Figure 7: Scalability Test Results

host.lbl.gov

host.psc.edu

Given:

10 consumers

40 events/sec

1 5 1 1 1+ + + +() 2÷() 4.5=

 9 June 16, 2003

Tests with 1 consumer, as opposed to10, showed that latency was near the minimum, even with 100 producers. Note to
reviewers: The final version of the paper will include these results in Figure 7, and have a more precise statement in the
previous sentence. The reason for this is that the filtering overhead is incurred per-consumer, and therefore 1/10 the
number of consumers incur 1/10 as much overhead. This means that Activation Producer performance with 100 producers
and 1 consumer is only a little worse than the performance with 10 producers and 10 consumers.

8.0 Conclusions
In this paper we described a Grid activation service which is designed to address the problem of starting, stopping, and

changing the level of instrumentation data from running Grid processes. We have shown that a single Activation Producer
node is efficient enough to handle an aggregate throughput of 8,000 monitoring events per second. In order to use the
Activation Producer, the NetLogger instrumentation in Athena did not need to be modified at all, and only a single
component (the Activation Node) needed to be added to the submitted job. The query language, although simple, provided
sufficient flexibility for current needs. Overall, we believe that the Activation Services’s flexible, distributed architecture
will prove to be a useful building block for a comprehensive Grid monitoring and troubleshooting system.

9.0 Acknowledgments
This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research.

Mathematical, Information, and Computational Sciences Division under U.S. Department of Energy Contract No.
DE-AC03-76SF00098 and by the Director, Office of Science, High Energy Physics, U.S. Department of Energy Contract
No. DE-AC03-76SF00098. See the disclaimer at http://www-library.lbl.gov/disclaimer. This is report no.
LBNL-4NNNN.

10.0 References
[1] Athena Framework. http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/General/index.html

[2] M. Burger, T. Kielmann, H. Bal. TOPOMON: A Monitoring Tool for Grid Network Topology, International Conference on Com-
putational Science (2), pp. 558-567, 2002.

[3] R. Byrom et. al., R-GMA: A Relational Grid Information and Monitoring System, Proceedings of the Cracow ‘02 Grid Work-
shop, January 2003. Web: https://edms.cern.ch/file/368364/1/rgma.pdf

[4] T. Dewitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkist, J. Subhlok and D. Sutherland, ReMoS: A resource monitoring system
for network aware applications, Tech. Rep. CMU-CS-97-194, School of Computer Science, Carnegie Mellon University,
December 1997

[5] G. Eisenhauer, F. Bustamente and K. Schwan, Event Services for High Performance Computing. Proceedings of High Perfor-
mance Distributed Computing (HPDC-2000).

[6] W. Feng, J. Hay, and M. Gardner, MAGNeT: Monitor for Application-Generated Network Traffic. 10th International Conference
on Computer Communication and Networking. (IC³N'01), Scottsdale, Arizona, October 2001.

[7] I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Sys-
tems Integration. Open Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002.

[8] D. Gunter, B. Tierney, K. Jackson, J. Lee, M. Stoufer, Dynamic Monitoring of High-Performance Distributed Applications, Pro-
ceedings of the 11th IEEE Symposium on High Performance Distributed Computing, HPDC-11 11, July 2002.

[9] Hawkeye, A Monitoring and Management Tool for Distributed Systems. http://www.cs.wisc.edu/condor/hawkeye/

[10] J. Hollingsworth and B. Tierney, Instrumentation and Monitoring, in The Grid, Volume 2. Morgan Kaufman, 2003.

[11] Kalmady R. and B. Tierney, A Comparison of GSIFTP and RFIO on a WAN, Proceedings of Computers in High Energy Physics
2001 (CHEP 2001).

[12] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K. Kunchithapadam and T. Newhall. IEEE Com-
puter 28, 11, pp.37-46 (November 1995). Special issue on performance evaluation tools for parallel and distributed computer
systems.

[13] pyGMA, http://www-didc.lbl.gov/pyGMA

[14] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, M. Swany, A Grid Monitoring Service Architecture, Global Grid
Forum White Paper, http://www-didc.lbl.gov/GridPerf/.

[15] B. Tierney and D. Gunter, NetLogger: A Toolkit for Distributed System Performance Tuning and Debugging, LBNL Tech Report
LBNL-51276

 10 June 16, 2003

[16] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, D. Gunter, The NetLogger Methodology for High Performance Dis-
tributed Systems Performance Analysis, Proceeding of IEEE High Performance Distributed Computing, July 1998,
LBNL-42611. http://www-didc.lbl.gov/NetLogger/

[17] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman. Grid Service Specification. Open Grid Service Infra-
structure WG, Global Grid Forum, Draft 2, 7/17/2002. http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-ogsi-gridser-
vice-29_2003-04-05.pdf

Appendix A: Experimental Host Details
The LBNL hosts were all 450 MHz Pentium III with 256MB of RAM, running RedHat Linux 7.2 (2.4.9 kernel) and

had Gigabit Ethernet external connectivity. The round trip time between these machines and PDSF, as estimated by ping,
was roughly 3ms. The remote host at psc.edu was a dual-processor 1GHz Pentium III with 892MB if RAM, running
RedHat Linux 7.2 (2.4.20 kernel), with high-speed (~400Mb/s) connectivity to the LBNL hosts. The round trip time
between this machine and PDSF, as estimated by ping, was roughly 70ms.

The PDSF cluster is heterogeneous, but most nodes have one or two Pentium III processors between 600MHz and
1GHz. Note to reviewers: Will include more details on PDSF in the final version.

